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1. Abstract

This paper describes a 3-D world sodeling technique using range data. Range data quantify
the distances from the sensor focal plane to the object surface, f.e., the 3-D coordinates of
discrete points on the object surface are known, The approach proposed herein for 3-D world
modeling is based on the Combinatorial Geometry (CG} Method which is widely used in Monte Carlo
particle transport calculations. First, each measured point on the object surface is surrounded
by a small sphere with a radius determined by the range to that point. Then, the 3-D shapes of
the visible surfaces are obtained by taking the (Boolean) union of all the spheres. The result
is an unambiguous representation of the object’'s boundary surfaces. The "pre-learned” partial
knowledge of the environment can be alsc represented using the CG Method with a relatively small
amount of data. Using the CG type of representation, distances in desired directions to boundary
surfaces of various objects are efficiently calculated. This feature is particularly useful for
continuously verifying the world model against the data provided by a range finder, and for inte-
grating range data from successive locations of the robot during motion. The efficiency of the
proposed approach is illustrated by simulations of a spherical robot in a 3-D room in the presence
of moving obstacles and inadequate pre-learned partial knowledge of the environment.

2. Introduction

An autonomous robot must have sensory capability to deal with unknown or partially known enviromments.
The sensor derived data need to be processed to an appropriate internal representation of the external world.
The external world to be described is fundamentally three-dimensional, involving object occlusion. Most compu-
ter vision research performed during the past twenty years has concentrated on using intensity images as sensor
data. The imaging hardware (cameras) for these studies typically project a three-dimensional scene onto 3
two-dimensional image plane, thus providing a matrix of gray level values representing the scene from a given
viewpoint. These values indicate the brightness at points on a regular spaced grid and contain no explicit
information about depth. Methods that use intensity information only for deriving 3-D structure are wsually
computationally intensive. This computationally expensive processing arises due to the fact that correspon-
dence of points between different views must be established and a complex system of nonlinear equatioss must
be solved([1]-{5)).

In recent years digitized range data have become available from both active and passive sensors, and the
quality of these data has been steadily improving({6]-[8]). Range data quantify the distances from the sensor
focal plane to an object surface. Since depth information depends only on geometry and is independent of illu-
mination and reflectivity, intensity image problems with shadows and surface markings do not occur. Therefore,
the process of representing 3-D objects by their shape should be less difficult in range images than in intensity
images. The problem addressed by this paper is the external world modeling using range data. Unique require-
ments for such a model are:

a) Allow representation of a general 3-D unknown or partially known environment, based on range data.

b) Allow for minimal fast memory for storage, _-

¢) Allow the introduction of a feeddack loop for continuous verification of the world model against the
data provided by the sensor (efficient distance calculation),

d; Allow for efficient integration of the range data from multiple views,

e) Allow for efficient navigation and manipulation.

A wide variety of techniques have been developed for representing 3-D objects for digital computiag pur-
poses. There are methods which describe the surface boundary and methods which represent the object’'s volume,
The simplest boundary representation is using n-sided planar polygons (triangles, quadrilaterals, etc.) which
can be stored as a list of 3-D node points 2long with their relationship information. Arpitrary surfaces are
approximated to any desired degree of accuracy by using many planar polygons. This type of representation is
popular because model surface area is well defined and all object operations are carried out using piecewise-
planar aigorithms. The next step in generality is obtained using quadric surface boundary representation. More
advanced techniques for representing curved surfaces with higher order polynomials or splines are mentioned in
the computer graphics and CAD literature([9]-[12]). There are many different techniques of this type: however
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they are generally not very compact in terms of data storage, nor are they computationally efficieat in calculat-
ing distances to boundary surfaces[13]. The Dest known volumetric representations are the oct-tree{14) general-
1zed cylinder{15) and multiple 2-D projection views[16]. The generalized cylinder approach is well sited to
many real world shapes. However, it becomes just about impossidle to use this represeatation for large, thin
objects. The sultiple 2-D projection view s net a general purpose technique since different objects may have
similar 2-D projections. The oct-tree representation is used in many world models. However, the indexing
problem{17] is serfously affecting the efficiency of this tecnaique. In conclusion there is 3 need for a fast
and robust technique for building 3-D models of arditrarily shaped objects.

In Chapter 3, a proposed external world modeling procedure and an efficient distanmce calculation algorithe
are presented. A technique for integrating the range data from myltiple views and a continuous verification
procedure of the world mode] versus the range data provided by the sensor is i{llustrated in Chapter 4. Finally,
the feasibility of the proposed approach is {llustrated in Chapter 5 by simulations of a spherical robot navi-
gating in a 3-0 room in presence of static and myving obstacles and inadequate pre-learned partial kaowledge of
the environment.

3. Represeatiag 3-D Surfaces Using the Cosirinatorial Geesetry

The basic problem addressed in this paper is one of representation. The proposed approach is based on the
Combinatorial Geometry (C6) method{[18] which is widely used in Monte Carlo simulation of particle tramsport in
3-D geometries. In CG (also known as Constructive Solid Geometry (CSG) im computer graphics and CAD litera-
ture) solids are represented as combinations of primitive solids or “"building dlocks® (i.e., spheres, cylinders,
boxes, etc.) using the Boolean operations of union, inte:section and difference., The storage data structure is
a binary tree where the terminal nodes are instances of primitives and the branching nodes represeat Scolean
operators. Any 3-D known object can be represented by a (Boolean) combination of primitive solids or deformed
superquadrics{19]. This representation is especially suitable for describing pre-learned parttal knowledge of
the environment. An example of describing an object composed of two boxes, one of them with a cylisdrical mole
is 1llustrated in Fig. 1. The result is a concise, unambiguous and complete representation of the mject volume
and boundary surface.
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Fig. 1. Representing a 3-D object using Comdbinatorial Geometry.
a - given ooject and its CG representation.
b - the storage data tree.

The result of a range scan is a matrix of distances from the sensor focal plane to an object ssrface. In
other words, the coordinates of discrete points on the “visible® parts of the boundary surfaces of different
objects in the externmal world of the robot, are known. Let e the (small) angle between two successive
“reading® directions of the sensor. First, each discrete point i, is surrounded by 2 small solid sphere with a
radius, rj = sax(R; sin a, AR;y, where R; is the range to point i, and &R; is the associated measurement error,
Then, the approximate 3-0 shape of the visidle doundary surfaces is obtained directly dy taxing the union of all
the spheres (see Fig. 2).
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Fig. 2. Descridbing the shape of 3-D objects using spheres.

The reason for using spheres is to keep the representation as compact as possible. Describing the sphere
for a particular discrete point in space means adding only one additional parameter (the radius) to tie coor-
dinates of the discrete point which are provided by the sensor. The radius rj is defined as ry » max(R; sin o,
AR{) to avoid the appearance of “holes” in the geometry and to take into account the range uncertaisty. Using
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this definition for ry, neighbor spheres overlap one another and the boundary surface of the unfom of all
spheres is continuous {without holes) from the robot's point of view. Finally, it is odvious that using the
“sphere® procedure, the shape of the boundary surfaces s distorted. However, the distortion is practicaliy
proportional to the range to each point since the ramge uncertainty is relatively small, In other words, the
resolution of the model is improved as the range to the surface is decressed.

3.1. Distance Calcslation in C6 Representation

A very useful feature of the (G representation is its efficiency in calculating distances to 3-D surfaces
in a desired direction. Observing discontinuities in the range data greater than the msximum size of the robot,
the scene s partitioned in many different zones, A rzone ts defined as the union of small spheres located
between two successive discontinuities in the range data. Using the storage data structure mentiomsed in Chapter
3, two tables are defined: the first one includes the spatial location of the small spheres; the second one
identifies the different zones in terms of these spheres. The distance to 3-D surfaces in a desired direction
from a given point, is calculated in two steps:

2) Each zone is surrounded tightly by a box (rectangular parallelepiped). Since the boxes are approximate
bounding configurations, intersections of a given ray with a box does not necessarily imply intersection
with any particular sphere. In addition, the different orientations of the sphere clusters fmply that
bounding boxes can fntersect. and therefore msitiple boxes may have to be checked for penetration by a
given ray. The box (boxes) penetrated by the ray is determined by calculating the intersection points
between the boxes and the ray. A list consisting of the boxes physically penetrated by the ray, is
defined. The corresponding list of zones is used to determine the penetration point.

b) Determine the small sphere penetrated by the ray and calculate the penetration point. This is done by
considering only the spheres included in the zones listed in the first step. Using this approach, only
2 small number of spheres are checked for peretration, and therefore significant computation time is
saved.

It should be mentioned that the boxes surrounding the zones are used only internally during distance calcu-
lations and they are not affecting the geometric description of the 3-D surfaces. ODuring path planaing, “tenta-
tive paths® are checked for potential collision by calculating the distances to object surfaces from scattered
points on the robot's surface in the desired direction. These distances can be effectively calculated by using
the CG representation, and the procedure outlined above.

4. Updatiag the World Model

Automatic construction of 3-D models of objects from multiple views is an important problem in computer
viston. In the past, a number of different techniques have been used for representation and modeling of 3-0
objects for computer vision applications([20]-[27]). However, there is an absence of a fast and robust tech-
nique for building 3-D models of arbitrarily shaped objects. The process of constructing 3-D models for objects
involves integrating tre range data from multiple views. In general, the integration process performs matching
to establish correspondence between the views, determines the interframe transtormations to register the views
in a common reference coordinate system and then merges the data. The difficult and time consuming Step in the
above process is the matching step required to establish a correspondence. Much of the previous reseirch efforts
have been directed toward solving the difficult correspondence probiem. The algorithm presented in this paver,
does not require any correspondence between different views, because the world model! uses a universal coordinate
system with the origin arbitrarily located at the robot’'s initial position. According to the representation
algoritha described in Chapter 3, the accuracy with which a certdin point in space may be observed dy the robot
depends upon the distance between the robot and the point., This fact is translated to the radius of the sphere
surrounding a particular point in the CG representation. Therefore, a point in space should be kept in memory
along with the most accurate information (shortest observation distance). In other words, for each “measured
point® in space, the shortest observation distance in the robot's history should be determined. The main probles
in implementing this approach is the fact that since the sampling procedure of range data is discrete, the proba-
bility of a particular point to be sampled from two different positions of the robot is zero. In other words,
each “measured point” 1s sampled just once during the robot history. The solution implemented in our approach
follows an iterative algorithm using the “old data® acquired before the current scan and the “new data® acquired
during the current scan:

a) The “old data“ is checked from the current position of the robot. Using the world model based on the
“old data“®, distances to 3-D surfaces from the robot's current position in the direction of points in
the “old data® are calculated. [f the distance to 3-D suyrfaces is smaller than the euclidean distance
to the sphere surrounding tha point then this particular point cannot be seea from the current positiom
of the rodot and the poiat representation is kept unchanged. therwise, the “"old" radius of the
surrounding Sphere is compared with the “new” radius determined Dy the euclidean distance from the
current position of the robot and the smallest radius is chosen Detween the old and the new radii.

b} The "new data™ acquired from the current position of the robot is checked against the “old data*. If
the “new” point (provided by the sensor) is located within the world model based on the old data (within
3 sphere surrounding an “old" point) then the new point is rejected and therefore no new sphere is added
to the world model.
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If the “hew" point is cutside the old world mndel, then the distance to 3-D surfaces in the “nev" point
direction is calculated (using the old world model). If the obtained distance is greater than the range
to the “mew” point (provided by the semsor), the “new” point is added to the world model as 3 sphere
with a radius deterwined by the range to the point. Otherwise (the obtained distance is smaller than
the range to the point) the “old" point (lccated approximately in the same direction, but closer to the
robot) is erased from the model and the "new” point s added to the world sodel. This is the case of
moving objects, in which the "old” data should be continuously verified and updated.

c) Verification of pre-learned geometric knowledge of the environment.

The sensor derived data is compared with the calculated distances obtained from scanning the pre-learned
geometric environsent. The pre-learned data is represented in a very concise way using the CG repre-
sentation. If the “real® range ‘n a certain direction is found to be simtlar (within the uncertainty
of the pre-learned data) to the calculated range in the same direction, the representation is kept
unchanged and no point is added to the world model. If the real range is smaller than the calculated
range, the new real point is added to the world model. Finally, if the real range is greater than the
calculated range, the entire pre-learned object is removed from the world model and the “real® point is
added to the representation.

5. Sasple Problems

The efficiency of the proposed world model is fllustrated in severa]l simulations of a spherical robot
navigating in a 3-D room in presence of static and moving obstacles and inadequate pre-learned partial knowledge
of the environment. The robot fs assumed to move in a plane parallel to the floor, along straight lines. The
origin of coordinates is ardbitrarily located at the robot's starting position. The goal coordinates are kmown
a-priori. The external world geometry, the robot starting position and the goal location are illustrated in
Fig. 3. The radius of the spherical robot is 3 cm. The plane of motion is 30 om off the floor. The navigation
algorithm used in the sample prodlems is described in detail) in Ref. 28,
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81 - B0X; dimensions (20 x 15 x 40); Center at (30,37.5,20)

B2 - BOX; dimensions (10 x 60 x 90); Center at (-15,35,45)
i = 83 - BOX; dimensions (40 x 20 x 90); Center at (100,30,45)
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CYLINDER; Center of dasis at (60,0,0)
Height 60, Radius 15

S - SPHERE; Center at (110,-20,30)
Radius 20

P < PRISM; dimensions (30 x 30 x 90); Vertex at (140,-10,0)

Room dimensions: 200 x 100 x 100

[+ 7]

J All dimensions are in centimeters
-

Fig. 3. The geometry of the room.

To illustrate the efficiency of the proposed technique for duilding the world model, four sample problems
have been considered. In the first problem the 3-D environment is completely unknown and the rodbot is repre-
senting the surrounding environment using the range data provided by the sensor. Figures 21-8 illustrate the
plane of motiom during the robot's journey from its initia! position to a final position where he can directly
“see” the goal. The world representation is continuously updated using the inforwation provided by the semsor
from different reading positions of the robot. It can be seen that as the robdot proceeds to the goal the world
representation becomes more complete.

In the second problem (Figs. 9-13), the box Bl and the prism P are provided a-priori to the rodot (pre-~
learned knowledge). The robot is verifying the accuracy of the pre-learned inforwation and after finding it
correct, is representing the two objects using two (6 primitives (Box and Prism), without using the sphere type
of representation. The representation of the overall 3-D world is thus more concise than in the first prodlem,
in which the sphere procedure was used to represent all objects.
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The external world geometry considered in the two last probliems is simtlar to the geometry of the first two
problems, except that the boxes 81, 82 and the cyliinder C are removed from the scemne. [n the third prodlem the
box 83 and the prisam P are defined 2s pre-learned information which (intentionally) was provided ifmaccurately to
the robot. From Figs. 14-17 it can be seen that the robot is verifying the pre-learned c¢ata and finding that
the box s inaccurately positioned (Fig. 14) is using the sensor (real) data omly to represent it (Figs. 15 and
16). At a later stage, (Fig. 17) the robot can directly check the pre-learned informasion for the prisa (which
was previously occluded) and finding it incorrect is removing the priss from memory. The prisa s then accu-
rately represented using the data provided by the sensor.

In the last example, the box and the prisa are correctly provided as pre-learned information, and the
“unknown® sphere is moving forward and backward between successive positions of the rodot. Figure 18 11lustrates
the environment with the sphere at its initial position. While the robot is moving to the second position {Fig.
19) the sphere is moving forward. The previous Information adbout the sphere is then checked, found incorrect and
removed from the robot's memory. Finally, when the rodot is reaching the next (third) position, the sphere has
moved back to its initial position. It can De seen (Fig. 20) that the robot is keeping the previows information
about the sphere, since it is now occluded by the “real® data and therefore cannot be verified. If at a later
stage the robot is again in a position to directly “see® the “old® position of the sphere, this previous infor-
sation will be checked and eventually removed from the world model.

These and the following figures shown in this paper have beea produced using a computer printer and a very
simple plotting routine. Since the maximum resolution of the primter along the Y axis (across the page) ts 130
characters, certain existing spheres having diameters sama!ler thaa the printer resolution are mot printed and
therefore some "holes” may artificially appear on surfaces which are ir fact coatinuous.

6. Comclusfon

The proposed approach for sodeling the external world using tee Combinatorial Geometry was fownd promising.
The range data from successive locations of the robot during sotiom can be effectively combined and given an
adequate world representation. The pre-learned knowledge and moving objects in the scene can be effectively
verified and represented in the world model. The computation time per “picture® including the simslated range
scan, modeling the geometry, trajectory plamming and plitting the plane of motion was 30 s to 1 wis CPU time of
YAX-8600 Computer, depends upon the scene complexity asd the mumber of tentative paths considered. More thanm
503 of the computation time is used for plotting the plane of sotion and for calculating distances in a given
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direction from discrete points. These calculations can be executed independently and therefore, perforwing the
same calculations on a parallel or concurrent computer may significantly reduce the computation time. Future
work using the proposed external world modeling approach will focus on the following issues: scene segmentation
into objects, feature point extraction, recognition of 3-D objects from range data, replacing the sphere repre-
sentation with a more concise CG volumetric representation of the recognized objects and finally implementation
of this method on the NCUBE Machine and experimental verification using the HERMIES-11 robot.
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